Algebra Qualifying Examination

January 2016

Do either one of \(nA \) or \(nB \) for \(1 \leq n \leq 5 \). Justify all your answers.

1A. Let \(A \), \(B \) be two square matrices over a field \(F \). Suppose that \[
\begin{pmatrix}
A & 0 \\
0 & B
\end{pmatrix}
\]
is similar to \[
\begin{pmatrix}
B & 0 \\
0 & A
\end{pmatrix}
\]. Prove that \(A \) is similar to \(B \).

1B. Let \(F \) be an infinite field and let \(V \) be a \(F \)-vector space. Show that if \(V = \bigcup_{i=1}^{n} V_i \) for \(F \)-subspaces, \(V_1, \ldots, V_n \), then there is \(j \in \{1, \ldots, n\} \) with \(V = V_j \).

2A. Show that the automorphism group of the quaternion group of order 8 is a semidirect product of a group of order 4 and a group of order 6.

2B. Let \(G \) be a finite simple (abelian or non-abelian) group of order \(n \). Find the number of normal subgroups of \(G \times G \).

3A. Give a complete proof of the Hilbert Basis Theorem: If \(R \) is a commutative Noetherian ring with identity, then so is \(R[x_1, x_2, \ldots, x_n] \).

3B. Let \(R \) be a PID and \(I \) a nonzero ideal of \(R \). Show that there are only finitely many ideals of \(R \) containing \(I \). Show by example that this may not hold if \(R \) is a UFD but not a PID.

4A. Let \(F = \mathbb{C} \), let \(K = \mathbb{C}(t) \), the field of rational functions in an indeterminate \(t \), and let \(G \) be the Galois group \(G(K/F) \). Suppose \(\varphi \) and \(\theta \) in \(G \) are determined by \(\varphi(t) = \zeta t \) and \(\theta(t) = 1/t \), where \(\zeta \) is a primitive \(n \)th root of unity in \(\mathbb{C} \), \(n \geq 4 \), and set \(H = \langle \varphi, \theta \rangle \leq G \). Show that \(H \) is isomorphic with the dihedral group \(D \) of order \(2n \) and show that the fixed field of \(H \) is \(\mathbb{C}(t^n + t^{-n}) \).

4B. Let \(\xi \in \mathbb{C} \) be such that \(\xi^{2015} = 3 \). Show that \(-3 \) is not a sum of squares in \(\mathbb{Q}(\xi) \).

5A. Let \(G \) be the group given by the presentation \(\langle x, y, z | x^2, y^3, (xyz)^4 \rangle \). Write the commutator factor group \(G/[G,G] \) as a direct product of cyclic groups and justify your answer.
5B. Let A be a finite dimensional, associative (not necessarily commutative) \mathbb{C}-algebra with no zero divisors, but with identity. Show that $\dim_{\mathbb{C}} A = 1$.