Problem 1. Let \(f_n(x) \geq 0 \) be continuous functions on \([0, 1]\). Suppose that \(\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = 0 \) and that for all \(x \), \(\lim_{n \to \infty} f_n(x) = 0 \). Prove or disprove that \(f_n \) must converge uniformly to 0 on \([0, 1]\).

Problem 2. Let \((X, \mu)\) be a \(\sigma \)-finite measure space. Prove that \(\mu(X) < \infty \) if and only if \(L^2(X, \mu) \subset L^1(X, \mu) \).

Problem 3. Let \(m \) be Lebesgue measure on \([0, 1]\). Given \(f \in L^2([0, 1], m) \) define
\[
Kf(x) = \frac{1}{x^{4/3}} \int_0^x f(t) \, dt.
\]
(a) Show that there is a constant \(C \) such that \(\|Kf\|_1 \leq C \|f\|_2 \) for all \(f \in L^2([0, 1], m) \), i.e., \(K \) is a bounded operator from \(L^2([0, 1], m) \) to \(L^1([0, 1], m) \).
(b) Find the operator norm of \(K \).

Problem 4. Let \((X, \mu)\) be a finite measure space. Let \(f \in L^1(X, \mu) \). For \(t \in \mathbb{R} \) define
\[
g(t) = \int_X \cos(tf(x)) \, d\mu(x)
\]
Prove that \(g(t) \) is differentiable for all \(t \) and that the derivative is a continuous function on \(\mathbb{R} \).

Problem 5. Let \(f_n \) be absolutely continuous functions on \([a, b]\), \(f_n(a) = 0 \) for all \(n \). Suppose \(f'_n \) is a Cauchy sequence in \(L^1([a, b], m) \) where \(m \) is the Lebesgue measure. Show that there exists an absolutely continuous function \(f \) on \([a, b]\) such that \(f_n \to f \) uniformly on \([a, b]\).

Problem 6. Let \(f, f_k : \mathbb{R} \to \mathbb{R} \) be Lebesgue measurable functions such that \(f_k \to f \) a.e. and there exists a Lebesgue integrable function \(g \) (\(g \in L^1(\mathbb{R}) \)) such that
\[
|f_k(x)| \leq g(x) \text{ a.e. for all } k.
\]
The goal in this problem is to prove that \(f_k \to f \) almost uniformly, i.e., for any \(\delta > 0 \) there exists \(E \subset \mathbb{R} \) such that \(m(E) < \delta \) and \(f_k \to f \) uniformly on \(E^c \). The measure \(m \) is Lebesgue measure. Let \(X_0 = \{x : g(x) = 0\} \) and \(X_n = \{x : |g(x)| \geq 1/n\} \) for \(n \in \mathbb{N} \) so that \(\mathbb{R} = \bigcup_{n=0}^{\infty} X_n \).

(a) Show that \(X_n \) has finite measure for all \(n \geq 1 \).
(b) Show that for any \(\delta > 0 \), there is a set \(E \) such that \(m(E) < \delta \) and for all \(n \geq 1 \) the sequence \(f_k \) converges to \(f \) uniformly on \(E^c \cap X_n \).
(c) Show that \(f_k \) converges to \(f \) uniformly on \(E^c \).