

1. SEQUENCES AND SERIES

DEF 1.1 A set \mathcal{M} and a function $d : \mathcal{M} \times \mathcal{M} \to \mathbb{R}^+$ are called a **metric space** if

1. $d(x, y) = d(y, x)$
2. $d(x, y) = 0$ iff $x = y$
3. $d(x, y) \leq d(x, z) + d(z, y)$ (triangle inequality)

DEF 1.2 A sequence $\{x_n\}$ **converges** to x, if for every $\epsilon > 0$ there exists N, such that for all $n \geq N$,

$$d(x, x_n) \leq \epsilon.$$

DEF 1.3 A sequence $\{x_n\}$ is called **Cauchy** (or **fundamental**) if for every $\epsilon > 0$ there exists N, such that

$$d(x_m, x_n) \leq \epsilon, \quad \text{for all} \quad m, n \geq N.$$

DEF 1.4 A metric space is called **complete** if every Cauchy sequence converges.

DEF 1.5 A metric space is called **compact** if any sequence has a converging subsequence.

DEF 1.6 Series

$$\sum_{n=1}^{\infty} x_n$$

converges if its partial sums, $S_N = \sum_{n=1}^{N} x_n$, converge as $N \to \infty$.

DEF 1.7 Series (1) **converges absolutely** if

$$\lim_{N \to \infty} \sum_{n=1}^{N} |x_n| < \infty.$$

DEF 1.8 Given a power series, $\sum_{n=0}^{\infty} c_n z^n$, define

$$\alpha = \limsup_{n \to \infty} \sqrt[n]{|c_n|}; \quad R = \frac{1}{\alpha}.$$

R is called the **radius of convergence** of the series, the latter converges if $|z| < R$ and diverges if $|z| > R.$
1.1. Convergence Tests

Root test. Let $\alpha = \limsup_{n \to \infty} \sqrt[n]{|x_n|}$. Series (1) converges (absolutely) or diverges if $\alpha < 1$ or $\alpha > 1$ respectively. (More analysis is required if $\alpha = 1$)

Ratio test. Series (1) converges (absolutely) if $\limsup_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| < 1$ and diverges if there exists some number N such that $|x_{n+1}/x_n| \geq 1$ for all $n > N$.

Comparison test. If $\lim_{n \to \infty} \left| \frac{x_n}{y_n} \right| = C \in (0, \infty)$, series $\sum_{n=1}^{\infty} x_n$ converges absolutely iff series $\sum_{n=1}^{\infty} y_n$ does.

1.2. Is there a “boundary” between converging and diverging series?

The series

$$\sum_{n=1}^{\infty} \frac{1}{n^\alpha}$$

converges for $\alpha > 1$ and diverges for $\alpha \leq 1$. Thus the exponent $\alpha = 1$ corresponds to the “boundary” for power-law decay rates between converging and diverging series. However, for more general functions, how “close” can we get to $1/n$ while still maintaining convergence? For example,

$$\sum_{n=2}^{\infty} \frac{1}{n \ln n \ln(n+1)^\alpha}$$

converges for all $\alpha > 1$ and diverges for $\alpha \leq 1$. So we lifted our boundary a bit, from $1/n$ to $1/(n \ln n)$. We can go even further and observe that

$$\sum_{n=3}^{\infty} \frac{1}{n \ln n \ln(n+1)^\alpha}$$

converges for all $\alpha > 1$ and diverges for $\alpha \leq 1$. Etc, etc: we can keep adding more iterated logarithms (or other functions) in a similar manner. Is there some limit to this process? In other words, e.g. is there some special monotone-decreasing sequence $\{b_n\}$ such that whenever $c_n/b_n \to 0$ (as $n \to \infty$) the series $\sum c_n$ converges and whenever $b_n/d_n \to 0$, the series $\sum d_n$ diverges?

1.3. Fun Stuff

Consider the geometric series,

$$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}, \quad |z| < 1.$$

Pretending that this formula is valid for arbitrary $z \neq 1$, we can “derive” that $1 - 1 + 1 - 1 + \cdots = 1/2$, or $1 + 2 + 4 + 8 + \cdots = -1$. In this case the divergent sum acquires meaning via analytic continuation of some appropriately chosen function outside of the radius of convergence of its power series. In a similar fashion one can get such formulas as, e.g.,

$$1 - 2 + 3 - 4 + \cdots := \left. \frac{1}{(1+z)^2} \right|_{z=1} = \frac{1}{4}; \quad 1 + 2 + 3 + 4 + \cdots := \zeta(-1) = -\frac{1}{12}.$$
2. CONTINUITY AND DIFFERENTIATION

Unless specified otherwise, we consider functions between metric spaces \mathcal{X} and \mathcal{Y}.

Def 2.1 A function f is called **continuous at** x_0 if for every $\varepsilon > 0$ there exists $\delta > 0$, such that for all $x \in \mathcal{X}$ with $d_\mathcal{X}(x, x_0) < \delta$, $d_\mathcal{Y}(f(x), f(x_0)) < \varepsilon$. A function which is continuous at every point of \mathcal{X} is called **continuous in** \mathcal{X}.

Def 2.2 A function f is called **uniformly continuous** if for every $\varepsilon > 0$ there exists $\delta > 0$, such that for all $x_1, x_2 \in \mathcal{X}$ with $d_\mathcal{X}(x_1, x_2) < \delta$, $d_\mathcal{Y}(f(x_1), f(x_2)) < \varepsilon$.

Assume that our metric spaces are also **normed** linear vector spaces with metric and norm related via $d(f, g) = \|f - g\|$.

Def 2.3 Suppose \mathcal{O} is an open set in \mathcal{X}; f maps \mathcal{O} into \mathcal{Y}; $x_0 \in \mathcal{O}$. If there exists a **bounded** linear operator $Df(x_0)$, such that

$$\lim_{\|x\|_{\mathcal{X}} \to 0} \frac{\|f(x_0 + x) - f(x_0) - Df(x_0)x\|_{\mathcal{Y}}}{\|x\|_{\mathcal{X}}} = 0,$$

then f is called **differentiable at** x_0, and $Df(x_0)$ is called the (Fréchet) **derivative** or **differential** of f at x_0. If f is differentiable at every point in \mathcal{O}, we call f **differentiable in** \mathcal{O}. The **determinant** of the operator $Df(x_0)$ (if well-defined) is called the **Jacobian** of f at x_0.

2.1. SOME IMPORTANT RESULTS

Mean value theorem. Suppose f is continuous on $[a, b]$ and differentiable in (a, b). There exists $x \in (a, b)$, such that

$$f'(x) = \frac{f(a) - f(b)}{a - b}.$$

Taylor’s theorem (1d). Suppose $f \in C^{n-1}[a, b]$ and $f^{(n)}(x)$ exists for all $x \in (a, b)$. For all x and y such that $a < x < y < b$, there exists $\xi \in [x, y]$ such that

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(y)}{k!}(x-y)^k + \frac{f^{(n)}(\xi)}{n!}(x-y)^n.$$

Taylor’s theorem (multi-d). Let B be a closed ball centered at the origin in \mathbb{R}^m; $f \in C^n(B)$; $x \in B$. Then

$$f(x) = \sum_{|a| < n} \frac{x^a}{a!} \partial^a f(0) + \sum_{|a| = n} \frac{x^a}{a!} \partial^a f(\xi x), \quad \text{for some } \xi \in [0, 1].$$

Inverse function theorem. Assume that f is a continuously differentiable function from \mathbb{R}^n and $Df(x)$ is invertible. Then f is invertible in some neighborhood of x and its inverse is continuously differentiable in some neighborhood of $f(x)$.

Implicit function theorem. Assume that F is a continuously differentiable function from (an open subset) $\mathcal{O} \subset \mathbb{R}^n \times \mathbb{R}^m$ into \mathbb{R}^m; $(x, y) \in \mathcal{O}$; $F(x, y) = 0$; and DF is one-to-one. Then there exists a neighborhood $\mathcal{N} \subset \mathbb{R}^n$ containing x and a function $f : \mathcal{N} \to \mathbb{R}^m$, such that $f(x) = y$ and $F(x, f(x)) = 0$ for all $x \in \mathcal{N}$.
3. Integration, Theorems relating Integrals and Derivatives

Def 3.1 A finite ordered subset of \([a, b], \pi = (\pi_1, \ldots, \pi_n)\), such that
\[
a = \pi_1 < \pi_2 < \ldots < \pi_{n-1} < \pi_n = b
\]
is called a partition of \([a, b]\). We say \(\pi_2\) is a refinement of \(\pi_1\) if \(\pi_1 \subset \pi_2\). A sequence of partitions \(\{\pi^n\}\) is called fine if each partition in the sequence is a refinement of the previous one and
\[
\lim_{n \to \infty} \max_{k=2,\ldots,|\pi^n|} (\pi^n_k - \pi^n_{k-1}) = 0.
\]

Def 3.2 Suppose the functions \(f\) and \(g\) are such that following limit exists and is the same for all fine sequences of partitions of \([a, b]\) and all \(x(\pi) = (x_2, \ldots, x_{|\pi|})\) such that \(x_k \in [\pi_{k-1}, \pi_k], k = 2, \ldots, |\pi|\):
\[
\lim_{n \to \infty} \sum_{k=2}^{|\pi^n|} f(x_k(\pi^n))|g(\pi^n_k) - g(\pi^n_{k-1})|.
\]

It is then called the **Riemann-Stieltjes integral** of \(f\) with respect to \(g\) over \([a, b]\) = : \(\Omega\) and is denoted by
\[
\int_a^b f(x) \, dg(x) \quad \text{or} \quad \int_\Omega f \, dg.
\]

- If \(g\) is differentiable, then Riemann-Stieltjes integral can be related to the usual Riemann integral,
\[
\int_\Omega f \, dg = \int_\Omega f(x)g'(x) \, dx.
\]

Def 3.3 A function \(f: [a, b] \to \mathbb{R}\) is called of bounded variation if
\[
\mathcal{V}_b^f(f) := \sup_{\pi \in \mathcal{P}[a, b]} \sum_{n=2}^{|\pi|} |f(\pi_n) - f(\pi_{n-1})| < \infty.
\]

Here \(\mathcal{P}[a, b]\) denotes the set of all partitions of \([a, b]\). The space of all functions of bounded variation on \([a, b]\) is denoted by \(\text{BV}[a, b]\).

3.1. Some Important Results

Existence of Riemann-Stieltjes integral Suppose \(f \in \mathcal{C}[a, b]\) and \(g \in \text{BV}[a, b]\), then the Riemann-Stieltjes integral (3) exists.

- For a given \(g \in \text{BV}[a, b]\), the class of functions integrable with respect to \(g\) is larger than \(\mathcal{C}[a, b]\) and essentially includes all Riemann-integrable functions which do not share points of discontinuity with \(g\).

Fundamental theorem of calculus. Let \(f \in \mathcal{C}[a, b], g \in \text{BV}[a, b]\), then
\[
\int_a^b \, dg = g(b) - g(a); \quad \text{if in addition } g \in \mathcal{C}[a, b], \quad \text{then } \frac{d}{dg} \int_a^x f(y) \, dg(y) = f(x) \quad \text{for all } x \in [a, b].
\]

Here \(\frac{dF(x)}{dg(x)} := \lim_{\epsilon \to 0} \frac{F(x + \epsilon) - F(x)}{g(x + \epsilon) - g(x)}\) (essentially) the **Radon-Nikodym derivative** of \(F\) with respect to \(g\).
Change of variables. Suppose $g, h \in \text{BV}(\Omega); f, dg/dh \in C[a,b]$, then
\[
\int_{\Omega} f \, dg = \int_{\Omega} f \frac{dg}{dh} \, dh.
\]

Integration by parts. Suppose $f, g \in \text{BV}[a,b], f \in C[a,b]$, then
\[
\int_{a}^{b} f \, dg = f(b)g(b) - f(a)g(a) - \int_{a}^{b} g \, df.
\]

Integral mean value theorem I. Let f be continuous and g monotone on $[a,b]$, then there exists $x \in [a,b]$, such that
\[
\int_{a}^{b} f \, dg = f(x)[g(b) - g(a)].
\]

Integral mean value theorem II. Let f be monotone and g be continuous on $[a,b]$, then there exists $x \in [a,b]$, such that
\[
\int_{a}^{b} f \, dg = f(a)[g(x) - g(a)] + f(b)[g(b) - g(x)].
\]

4. SEQUENCES OF FUNCTIONS

DEF 4.1 A sequence of functions $\{f_n\}$ converges to f point-wise in \mathcal{X} if for every $x \in \mathcal{X}$,
\[
\lim_{n \to \infty} f_n(x) = f(x).
\]

DEF 4.2 A sequence of functions $\{f_n\}$ converges to f uniformly in \mathcal{X} if for every $\epsilon > 0$ there exists N such that for all $n > N$ and all $x \in \mathcal{X}$,
\[
d(f_n(x), f(x)) < \epsilon.
\]

DEF 4.3 A family of functions, \mathcal{F}, is called equicontinuous if for all $\epsilon > 0$ there exists $\delta > 0$, such that whenever $d_{\mathcal{X}}(x_1, x_2) < \delta$,
\[
d_{\mathcal{Y}}(f(x_1), f(x_2)) < \epsilon \quad \text{for all} \quad f \in \mathcal{F}.
\]

4.1. SOME IMPORTANT RESULTS

Weierstrass M-test. If $\sup_{x \in \mathcal{X}} |f_n(x)| < M_n$ and the series $\sum M_n$ converges, then $\sum f_n(x)$ converges uniformly in \mathcal{X}.

Uniform convergence theorem. A uniform limit of continuous functions is continuous.

Monotone convergence theorem. A point-wise monotone sequence of continuous functions converging to a continuous function on a compact set does so uniformly.

Exchanging the order of limits and integration. Suppose f_n converge uniformly to f in Ω and each f_n is integrable with respect to g over Ω, then
\[
\lim_{n \to \infty} \int_{\Omega} f_n \, dg = \int_{\Omega} f \, dg.
\]
Exchanging the order of limits and differentiation. Suppose f_n' converge uniformly on $[a, b]$ and f_n converge at some $x_0 \in [a, b]$, then f_n converge uniformly on $[a, b]$ to some differentiable function f and
\[
\lim_{n \to \infty} f_n'(x) = f'(x).
\]

Stone-Weierstrass theorem. Continuous functions on \mathbb{R}^n may be uniformly approximated by polynomials on compact subsets of \mathbb{R}^n.

Arzelà-Ascoli Theorem. Every infinite equicontinuous family of maps between compact metric spaces contains a uniformly converging sequence.