The University of Arizona

Undergraduate Programs

in

Mathematics

2015–2016
The information and requirements given here apply to the 2015–2016 catalog. For other catalog years, please consult the archive (http://math.arizona.edu/academics/undergrads/requirements/majors/archive).

This booklet describes the undergraduate degree programs in Mathematics available for a student at The University of Arizona. It also contains information about facilities, activities, jobs, advising, and other services and activities supportive of the undergraduate math programs, e.g., what they are, where to find them, whom to contact, and so on.

The contents of this booklet are a subset of the information available at the website http://math.arizona.edu/academics/undergrads and the latest version of this booklet, in PDF form, may be downloaded from that web address. You are presently looking at the booklet created on: May 20, 2015

To request an appointment with an advisor or ask a question, please use the contact forms at http://math.arizona.edu/academics/undergrads/advising/contact.

Undergraduate Program
Department of Mathematics
The University of Arizona
P.O. Box 210089
Tucson, AZ 85721

mcenter@math.arizona.edu
Contents

Why study mathematics? 5
- Why declare a math major? ... 5
- More reasons to become a math major 6
- Careers in Mathematics ... 7
 - Educators ... 7
 - Practitioners .. 8

Undergraduate Mathematics Degrees and Requirements 10
- Comparing the B.A. and the B.S. 10
 - The B.A. in Mathematics 10
 - The B.S. in Mathematics 10
- Double Degrees: .. 11
- B.A./B.S. in Mathematics .. 12
 - Core Courses .. 13
 - Comprehensive Option 14
 - Computer Science Option 15
 - Economics or Business Option 16
 - General/Applied Mathematics Option 17
 - Probability and Statistics Option 18
 - Life Sciences Option 19
 - Mathematics Education Option 20

Advising, Activities, and Events 21
- The Undergraduate Math Majors Advising Center 21
- Faculty Advisors .. 21
- College of Science Advising Office 22
- Math Majors Events Calendar 22
The MathCats Club ... 22
Putnam Competition ... 22
Problem-Solving Laboratory .. 23
Undergraduate Research Seminar 23
Math Colloquia .. 24
 Undergraduate Colloquium ... 24
 Mathematics / Applied Mathematics Colloquium 24
 Math Instruction Colloquium 24
 Graduate Student Colloquium 24
 Applied Mathematics Brown Bag Colloquium 25

Opportunities for Math Majors 26
 Department-level Opportunities 26
 Undergraduate Research .. 26
 Undergraduate Teaching Opportunities 26
 Tutoring Jobs .. 26
 Honors ... 26
 University-level Opportunities 27
 Undergraduate Biology Research Program 27
 UA NASA Space Grant Program 28
 UA Summer Research Institute 28
 Teaching Teams Program .. 28
 UA Career Services .. 28
 Internships and Outside Programs 28
 Internships ... 28
 Summer Programs .. 29
 Semester Programs ... 29
Why study mathematics?

In many disciplines, the history of the twentieth century tells of the introduction of more and more mathematical techniques. Mathematics has been established as a universal ingredient in the understanding of the world, and is the language used in conveying this understanding. As we enter the twenty-first century, higher mathematics is not just a tool for physical scientists and engineers, but it is also of crucial importance in business, economics, and even the social sciences. Many mathematicians still delight in the aesthetic appeal of their subject; however, it is ultimately the application of mathematics that makes it a critical element in modern civilization.

Why declare a math major?

Undergraduate training in mathematics is an important step along many career paths. It is essential for those who intend to continue toward a graduate degree in
Mathematics, Applied Mathematics, Statistics, or Computer Science. Admissions committees for graduate studies in Astronomy, Physics, Engineering, Economics, or Finance often prefer students with undergraduate mathematics majors (together with the proper minor) over students who have majored in their own subject. Some University of Arizona mathematics graduates have also used their degree as the first step toward professional degrees in law, medicine, and even divinity.

The mathematics major is not just a path toward graduate education. Mathematics training is training in general problem solving. Many employers recognize this fact; they also recognize that a Bachelors degree in mathematics is proof of an ability and willingness to work hard. Many Mathematics majors have found success by completing more than one major. Double majors in Mathematics and Science, Mathematics and Business, or even Mathematics and a Social Science, prepare graduates with enhanced ability to compete well in the job market.

Mathematics majors are advised to develop both computing skills and communication skills during their time as a student. Computing skills are increasingly important in today’s society. Experience using graphing calculators and standard mathematical software packages, programming experience, and experience using the Internet are extremely useful. And in virtually any type of position, the need for good communication skills is paramount.

More reasons to become a math major

Let us not forget one of the main reasons for becoming a mathematics major. It is fun! The mathematics program affords students plenty of time to link their mathematical interests to other intellectual endeavors. Students who combine mathematics, computer science, and another area will find themselves with many options when they graduate with an undergraduate degree.

The Department of Mathematics created the Math Center to ensure that our mathematics majors have a home base to turn to during their undergraduate studies. One of our goals is to integrate the undergraduate mathematics major into the intellectual life of this university and this nation. The working mathematician is involved in three areas: the creation of new mathematics, the application of mathematics to solve real-world problems, and the teaching of mathematics. Many of our undergraduate mathematics majors are able to perform these same activities during their undergraduate years through various research and teaching/tutoring opportunities and summer internship opportunities.
Careers in Mathematics

There are few jobs with the title Mathematician. Mathematics majors may end up in a job with a title such as Engineer or Analyst. Career opportunities in the mathematical sciences fall into two broad categories, Educators and Practitioners:

Educators

University Professor

A Ph.D. degree in mathematics is required for this position. A university professor of mathematics teaches courses, mentors students, and provides service to the institution and the community. A university professor can also be considered a practitioner to the extent that he/she conducts research and develops new mathematical knowledge. A university professor may also engage in consulting activities.

College Teacher

College mathematics teachers may have a master’s degree or a Ph.D., depending on the level and nature of the institution. Responsibilities may be exclusively instruction-related, as in the case of a community college, or may include some research.

High School or Middle School Teacher

Well-qualified mathematics teachers are in high demand. A bachelor’s degree is the minimum requirement for teaching in secondary schools. State requirements for certification, which usually include courses in education, must also be met. The traditional areas of secondary school mathematics—algebra, geometry, and trigonometry—have been augmented in many schools by analytic geometry and calculus and other courses that are intended to meet diverse student needs. Newer curricula include computer programming, probability and statistics, linear algebra, and applications. The prospective teacher who is familiar with these latter areas will have a competitive advantage.
Practitioners

Actuary

Actuaries are hired by insurance companies (life, health, casualty, etc.), pension plans, businesses, consulting firms (business and actuarial), and government agencies. To become an actuary (Associate or Fellow), one must pass a series of examinations administered by the Society of Actuaries. The initial exams are primarily mathematics, including probability and statistics, and can be taken while still an undergraduate student. Because actuarial science is a mixture of mathematics and business, the student should speak with an advisor about other course work needed to prepare for this career.

Computational Scientist

A computational scientist is an applied mathematician who interprets problems arising from the physical sciences and engineering in mathematical form and develops mathematical solutions to these problems. Very large and sophisticated computers are used intensively. Potential employers include government laboratories, the chemical industry, and the biotech industry.

Operations Research Analyst

Also called management science analysts, operations research analysts help organizations coordinate activities and operate in the most efficient manner, by applying scientific methods and mathematical principles to organizational problems. Computers are used extensively in their work. Students interested in this career path should minor in Computer Engineering (COE) or Systems and Industrial Engineering (SIE).

Systems Engineer or Systems Analyst

A systems engineer or analyst usually has substantial course work in engineering or another technical field. This enables him/her to apply mathematical techniques to solve the problems unique to the industry of their employer. Students interested in this career path should consider minoring in Systems and Industrial Engineering (SIE).
Scientific Communication

The scientific publishing industry has a need for scientifically trained individuals for sales and editing. Excellent writing and oral communication skills are essential in this career field. Accurate and understandable technical writing is widely needed.

Software Engineer or Software Consultant

A software engineer generally designs and writes software that performs nonnumerical functions, such as graphics. A background in math and computer science is needed. Employers include consulting firms and large corporations which do their own software development. There is also room in this field for the entrepreneur or consultant.

Statistician

Statistics is both a very applied field and also a theoretical one. Many, but not all, statisticians are active in both applications and the development of new theory, but the greatest potential in terms of jobs is in applied statistics. Statisticians generally work with people in other fields, therefore communication skills are very important. Statistical applications nearly always include the analysis of data and hence some knowledge and experience in computing is very important. There are opportunities for statisticians in the government, in industry, business, medicine, and in academia.

Research Mathematician

In non-academic positions, research mathematicians conduct mathematical research in areas of interest to large corporations and various departments of government. These include the Department of Energy, various branches of the military, and security agencies. While the demand for non-academic research mathematicians has been shrinking in recent years, there still are positions available at national laboratories, the National Security Agency (NSA), and other government entities, as well as some large corporations. An advanced degree is usually required for these positions.
Undergraduate Mathematics Degrees and Requirements

The mathematics major is designed to meet many different needs. Our programs allow the student to choose from several options that are each tailored to the individual’s talents, interests, and career goals. A student may prepare for a variety of careers (see p. 7) by selecting the appropriate option and minor. Students choosing a mathematics major can take advantage of the full range of mathematical resources available on campus.

The University offers two different degrees with a major in mathematics, a Bachelor of Arts (B.A.) and a Bachelor of Science (B.S.).

Comparing the B.A. and the B.S.

As far as the mathematics coursework is concerned, the B.A. and B.S. are identical: they each require the core courses (listed on p. 13) and one of seven options (listed on p. 12). The two degrees differ only in the following ways:

- Second language requirement (details below).
- Science/application course requirements (details below).

The B.A. in Mathematics

- **Language Requirement:** Students must have *fourth semester proficiency* in a second language.
- The degree is not science-intensive. Students need to complete only the two Tier One NATS (170) and one Tier Two Natural Science courses, as specified in the University General Education requirements (http://gened.arizona.edu/content/information-students).

The B.S. in Mathematics

- **Language Requirement:** Students must have *second semester proficiency* in a second language.
• **Laboratory Science Courses Requirement:** The degree is science-intensive and requires one of the following sequences of laboratory science courses:

- PHYS 141 & 142
- PHYS 141 & 241
- PHYS 161H & 162H
- CHEM 151 & 152
- CHEM 105A & 106A & 105B & 106B
- MCB 181R & 181L & ECOL 182R & 182L
- PSIO 201 & 202
- GEOS 251 & 302
- GEOS 251 & 304

• **Application Courses Requirement:** (This requirement does not apply to the Mathematics Education Option.) Students must complete at least six units of non-math coursework with a prerequisite or corequisite of at least Calculus I (MATH 122B or higher). Choose from the following: ABE 201, 284, 428, 481A, 481B; ASTR 250, 302; ATMO 421C, 436A, 469A, 469B; BIOC 462A, 462B, 463A, 466; BME 481B; CE 214; CHEE 201, 201L, 202, 301A, 481A, 481B; CHEM 105A, 105B, 404A, 480A, 480B, 481; CSC 345, 422, 433, 436, 437, 445, 453, 460, 477; CSCV 345; ECE 201R, 381A, 404, 429; ECOL 302, 447, 496N; ECON 332, 361; ENGR 211C, 211P, 265; GEOG 463; GEOS 322, 342, 356, 419, 432, 434A, 440, 469, 479; HWRS 421, 431, 460A; ISTA 352, 421; MCB 303, 305, 480; MSE 345, 404, 415; OPTI 201R, 221, 404; PHYS 131, 140, 141, 142, 143, 151, 152, 161H, 162H, 240, 241, 251, 261H, 440; PSIO 303A, 303B, 304, 472; PTYS 407, 411; SIE 250, 265; SWES 305, 420, 470; WSM 402, 460A; or courses approved by your academic advisor.

Note: B.S. students may satisfy both the Laboratory Science Courses Requirement and the Application Courses Requirement by completing one of the Physics sequences. The University’s Tier Two General Education Requirement for Natural Science is satisfied for B.S. students by MATH 313, which is one of the core courses.

Double Degrees:

Students pursuing a second major that has a degree title different from that of the first major are technically double degree students. Additional requirements may apply to double degree students that do not pertain to double major students (students with two majors that have exactly the same degree title). See an advisor for detailed information about these additional requirements.
B.A./B.S. in Mathematics

The information and requirements given here apply to the 2015–2016 catalog. For other catalog years, please consult the archive (http://math.arizona.edu/academics/undergrads/requirements/majors/archive).

Both the Bachelor of Arts (B.A.) and the Bachelor of Science (B.S.) in Mathematics require a core of basic courses (listed on p. 13) followed by additional courses specific to one of seven possible options:

- **Comprehensive Option**: This option prepares students for graduate study in mathematics, applied mathematics, or most scientific fields. (see p. 14)
- **Computer Science Option**: This option is for students interested in applications of computers to mathematical problems, including math majors who plan to attend graduate school in computer science. (see p. 15)
- **Economics or Business Option**: This option is for students with a particular interest in business applications of mathematics, especially those preparing for graduate school in economics or finance. (see p. 16)
- **General/Applied Mathematics Option**: This option is for students who intend to enter the job market upon graduation, but may also be appropriate for students who plan to go on to graduate school in a field of science or engineering. (see p. 17)
- **Probability and Statistics Option**: This option is for students considering a career as an actuary or statistician, as well as for students wanting to attend graduate school in statistics. (see p. 18)
- **Life Sciences Option**: This option is for students considering a career in medicine, as well as for students wanting to attend graduate school in the biological sciences. (see p. 19)
- **Mathematics Education Option**: This option prepares students for teaching mathematics at the secondary school level. The option has two main components: a set of courses in mathematics, and a set of courses in teaching and learning mathematics in secondary schools. (see p. 20)

Each option requires at least 15 units of 400-level mathematics course work, and each option, except Mathematics Education, requires the student to complete a minor. Courses in minors must be distinct from those in the major.

The complete official requirements for each option are given in the University Catalog in the form of an Academic Advisement Report (ADVIP). Below we cover the portion of the requirements specific to the mathematics major. It is important for students to consult with their academic advisor about their choice and order of courses, as well as which optional courses would strengthen their degree program.
Core Courses

The information and requirements given here apply to the 2015–2016 catalog. For other catalog years, please consult the archive (http://math.arizona.edu/academics/undergrads/requirements/majors/archive).

All seven options for the B.A./B.S. require the following core courses, which should ideally be completed by the end of the sophomore year.

- One of the following programming courses: (1)
 - CSC 127A — Introduction to Computer Science
 - ISTA 130 — Computational Thinking and Doing
- MATH 122A AND MATH 122B (2) or MATH 125 — Calculus I
- MATH 129 — Calculus II
- MATH 223 — Vector Calculus
- MATH 313 — Introduction to Linear Algebra (3)
- MATH 323 — Formal Mathematical Reasoning and Writing (4)
- MATH 355 — Analysis of Ordinary Differential Equations (5)

(1) Either CSC 127A or ISTA 130 is recommended for most students. Other courses that can be used to satisfy the programming requirement are: CSC 227, ECE 175, MIS 301, MSE 350, and PHYS 305. These latter courses may require prior programming experience, additional prerequisites and/or a major or minor declared in another subject.

(2) MATH 122A and MATH 122B are a single-semester sequence of courses that cover Calculus I. They are equivalent to the old MATH 124 course, which is no longer offered.

(3) MATH 313 replaces MATH 215 as of fall semester 2015. Students who completed MATH 215 prior to fall 2015 or who have transfer credit equivalent to MATH 215 will still fulfill this requirement, though they will not earn upper-division credit for the course.

(4) MATH 323 is a writing-emphasis course that is the foundation for many of the advanced courses taken by any math major. It should be taken as soon as possible and before most of the 400-level courses in the major. Students who do not do well in MATH 323 should speak to an advisor about their choice of major/option.

(5) MATH 355 is the differential equations course that all mathematics majors are expected to take. This course emphasizes the ideas of dynamical systems and makes use of a more sophisticated approach to differential equations. MATH 254 is a differential equations course that is aimed at preparing students for engineering and science applications. Students with an additional major in engineering or science may ask their math faculty advisors for permission to substitute MATH 254 course for MATH 355 if a scheduling issue arises.
Comprehensive Option

The information and requirements given here apply to the 2015–2016 catalog. For other catalog years, please consult the archive (http://math.arizona.edu/academics/undergrads/requirements/majors/archive).

This option covers the minimum requirements for admission to most graduate programs in mathematics and applied mathematics. We have separate information on selecting the appropriate option and courses to prepare for various types of graduate programs ([see http://math.arizona.edu/academics/undergrads/grad-prep](http://math.arizona.edu/academics/undergrads/grad-prep)). Students selecting the comprehensive option should consult with a Mathematics Department faculty advisor in choosing additional course work to ensure that they are prepared for the graduate school of their choice. A minor in any subject is required with this option.

Students completing this option are expected to be proficient in proof writing before beginning most of the 400-level courses below. It is recommended that students who do not earn an A or B in MATH 323 speak with an advisor about their selected math major option before enrolling in proof-intensive 400-level courses.

- Core Courses (listed on p. 13)
- MATH 413 — Linear Algebra
- MATH 424 — Theory of Complex Variables
- MATH 425A — Real Analysis of One Variable
- MATH 425B — Real Analysis of Several Variables
- One of the following two pairs:
 1. MATH 415A — Introduction to Abstract Algebra
 2. MATH 415B — Second Course in Abstract Algebra

or
 1. MATH 454 — Ordinary Differential Equations and Stability Theory
 2. MATH 456 — Applied Partial Differential Equations

For an example of how to order your coursework to heed prerequisites and meet all degree requirements, please consult the sample 4-year plans (http://math.arizona.edu/academics/undergrads/advising/handouts). You will develop an individualized plan in consultation with your faculty advisor.
Computer Science Option

The information and requirements given here apply to the 2015–2016 catalog. For other catalog years, please consult the archive (http://math.arizona.edu/academics/undergrads/requirements/majors/archive).

A minor in computer science (http://www.cs.arizona.edu/undergrad/minors.html) is required with this option.

- Core Courses (listed on p. 13)
- One of the following three sequences:
 1. MATH 415A — Introduction to Abstract Algebra
 2. MATH 415B — Second Course in Abstract Algebra

 or

 1. MATH 464 — Theory of Probability
 2. MATH 466 — Theory of Statistics

 or

 1. MATH 475A — Mathematical Principles of Numerical Analysis
 2. MATH 475B — Mathematical Principles of Numerical Analysis

- Two of the following six courses:
 - MATH 413 — Linear Algebra
 - MATH 443 — Theory of Graphs and Networks
 - MATH 445 — Introduction to Cryptography
 - MATH 446 — Theory of Numbers
 - MATH 447 — Combinatorial Mathematics
 - CSC 473 — Automata, Grammars and Languages (*)

- A fifth 400-level course, to be selected with approval from your math faculty advisor.

(*) Students minoring in Computer Science may not double-dip courses with their math major, beyond their introductory programming course (i.e. CSC 127A). Students with a double major in Computer Science and Mathematics may be able to double-dip additional courses between the two majors, within reasonable limits. It is important to consult with both major advisors when planning your coursework to avoid graduation delays.

For an example of how to order your coursework to heed prerequisites and meet all degree requirements, please consult the sample 4-year plans (http://math.arizona.edu/academics/undergrads/advising/handouts). You will develop an individualized plan in consultation with your faculty advisor.
Economics or Business Option

The information and requirements given here apply to the 2015–2016 catalog. For other catalog years, please consult the archive (http://math.arizona.edu/academics/undergrads/requirements/majors/archive).

This option requires either

- an Economics Minor (http://econ.arizona.edu/undergraduate/minors.asp), or
- a Business Administration Minor (http://ugrad.eller.arizona.edu/academics/minors/business.asp), or
- a Finance Minor (http://www.ugrad.eller.arizona.edu/academics/minors/finance.asp), or
- a Thematic Minor (http://www.registrar.arizona.edu/thematicminor.htm) emphasizing courses from two or more disciplines/subject areas such as Economics, Business, and Finance.

The minor should be chosen in consultation with an advisor.

Students completing this option are expected to be proficient in proof writing before beginning their 400-level course work. It is recommended that students who do not earn an A or B in MATH 323 speak with an advisor about their selected math major option before enrolling in 400-level courses.

- Core Courses (listed on p. 13)
- MATH 425A — Real Analysis of One Variable
- MATH 464 — Theory of Probability
- Two of the following four courses:
 - MATH 413 — Linear Algebra
 - MATH 425B — Real Analysis of Several Variables
 - MATH 466 — Theory of Statistics
 - MATH 468 — Applied Stochastic Processes
- A fifth 400-level course, to be selected with approval from your math faculty advisor.

For an example of how to order your coursework to heed prerequisites and meet all degree requirements, please consult the sample 4-year plans (http://math.arizona.edu/academics/undergrads/advising/handouts). You will develop an individualized plan in consultation with your faculty advisor.
General/Applied Mathematics Option

The information and requirements given here apply to the 2015–2016 catalog. For other catalog years, please consult the archive (http://math.arizona.edu/academics/undergrads/requirements/majors/archive).

A minor in any subject is required with this option.

- Core Courses (listed on p. 13)
- MATH 422 — Advanced Applied Mathematics
- MATH 485 — Mathematical Modeling
- One of the following three sequences:
 1. MATH 454 — Ordinary Differential Equations and Stability Theory
 2. MATH 456 — Applied Partial Differential Equations

 or

 1. MATH 464 — Theory of Probability
 2. MATH 466 — Theory of Statistics

 or

 1. MATH 475A — Mathematical Principles of Numerical Analysis
 2. MATH 475B — Mathematical Principles of Numerical Analysis

- A fifth 400-level course, to be selected with approval from your math faculty advisor.

For an example of how to order your coursework to heed prerequisites and meet all degree requirements, please consult the sample 4-year plans (http://math.arizona.edu/academics/undergrads/advising/handouts). You will develop an individualized plan in consultation with your faculty advisor.
Probability and Statistics Option

The information and requirements given here apply to the 2015–2016 catalog. For other catalog years, please consult the archive (http://math.arizona.edu/academics/undergrads/requirements/majors/archive).

A minor in any subject is required with this option. Studies in statistics can equip students for careers working with data in a wide variety of fields, from biology to economics. By discussing with an advisor the choice of the minor, the student can greatly enhance his/her career opportunities. Students who are interested in becoming actuaries will find additional information and suggestions on our Careers in Actuarial Science page (http://math.arizona.edu/academics/undergrads/advising/actuary).

Students completing this option are expected to be proficient in proof writing before beginning their 400-level course work. It is recommended that students who do not earn an A or B in MATH 323 speak with an advisor about their selected math major option before enrolling in 400-level courses.

- Core Courses (listed on p. 13)
- MATH 425A — Real Analysis of One Variable
- MATH 464 — Theory of Probability
- MATH 466 — Theory of Statistics
- One of the following two courses:
 - MATH 468 — Applied Stochastic Processes
 - MATH 413 — Linear Algebra
- A fifth 400-level course, to be selected with approval from your math faculty advisor.

For an example of how to order your coursework to heed prerequisites and meet all degree requirements, please consult the sample 4-year plans (http://math.arizona.edu/academics/undergrads/advising/handouts). You will develop an individualized plan in consultation with your faculty advisor.
Life Sciences Option

The information and requirements given here apply to the 2015–2016 catalog. For other catalog years, please consult the archive (http://math.arizona.edu/academics/undergrads/requirements/majors/archive).

A minor in the biological sciences is required for this option. Possibilities include Astrobiology, Biochemistry, Biology, Biosystems Engineering, Ecology & Evolutionary Biology, Environmental Sciences, Molecular & Cellular Biology, Physiology, Physiological Sciences, and Pre-Health Professions, or a thematic minor (http://www.registrar.arizona.edu/thematicminor.htm) with a life sciences emphasis. A second major in a life science area may also be used to fulfill the minor requirement. Courses which may be of interest for your minor include: ECOL 320, 340, 380, 416, 426, 453, 496J; MCB 315, 410, 411, 422.

- Core Courses (listed on p. 13)
- MATH 422 — Advanced Applied Mathematics
- MATH 464 — Theory of Probability
- MATH 485 — Mathematical Modeling
- One of the following two courses:
 - MATH 310 — Applied Linear Algebra
 - MATH 413 — Linear Algebra
- One of the following two courses:
 - MATH 454 — Ordinary Differential Equations and Stability Theory
 - MATH 456 — Applied Partial Differential Equations
- One of the following two courses:
 - MATH 466 — Theory of Statistics
 - MATH 468 — Applied Stochastic Processes

For an example of how to order your coursework to heed prerequisites and meet all degree requirements, please consult the sample 4-year plans (http://math.arizona.edu/academics/undergrads/advising/handouts). You will develop an individualized plan in consultation with your faculty advisor.
Mathematics Education Option

The information and requirements given here apply to the 2015–2016 catalog. For other catalog years, please consult the archive (http://math.arizona.edu/academics/undergrads/requirements/majors/archive).

This option is for students preparing to teach mathematics at the secondary school level. The Education Option has two main components, a set of courses in mathematics, and a set of pedagogy courses. This option does not require a minor. The Secondary Math Education Program website (http://math.arizona.edu/~smep/index.html) contains additional information about admission and requirements.

- Core Courses (listed on p. 13)
- Courses in Mathematics:
 - MATH 315 — Introduction to Number Theory and Modern Algebra
 - MATH 330 — Topics in Geometry
 - MATH 361 — Statistics for Teaching
 - MATH 404 — History of Mathematics
 - MATH 407 — Synthesis of Mathematical Concepts

- Courses in Teaching and Learning Mathematics (Pedagogy):
 - MATH 205 — Teaching Secondary Mathematics
 - STCH 310 — Adolescent Learning in Science and Mathematics (†)
 - SERP 301B — Inclusive Education for Secondary Students With Diverse Abilities
 - The following sequence:
 1. TLS 416 — An Introduction to Structured English Immersion
 2. TLS 417 — Structured English Immersion Methods
 - TLS 435 — Content Area Literacy in a Multicultural School
 - MATH 406A — Curriculum and Assessment in Secondary School Mathematics
 - MATH 406B — Methods of Teaching Mathematics in Secondary Schools
 - MATH 494C — Student Teaching

- Constitution Requirement for Arizona State certification — fulfilled by completing one of the following: POL 210 or equivalent; a passing score on the AZ and US Constitution exams.

- GPA requirements:
 - GPA ≥ 2.5 in MATH 122A&B/125, 129, 223, 313
 - Pedagogy GPA ≥ 2.5
 - Major GPA ≥ 2.0
 - Cumulative UA GPA ≥ 2.0

(†) EDP 301 may be substituted for STCH 310. Contact mcenter@math.arizona.edu if you need this substitution.

For an example of how to order your coursework to heed prerequisites and meet all degree requirements, please consult the sample 4-year plans (http://math.arizona.edu/academics/undergrads/advising/handouts). You will develop an individualized plan in consultation with your faculty advisor.
Advising, Activities, and Events

The Undergraduate Math Majors Advising Center

The Undergraduate Math Majors Advising Center, known simply as The Math Center, supports our undergraduate mathematics degree programs. The Math Center provides advising to math majors and minors on course selection and program requirements. Additionally, we organize events for undergraduates and provide facilities for undergraduate activities including the MathCats student club.

Be sure to watch for a weekly news email from the Math Center (mcenter@math.arizona.edu) that will announce these and other events that may be of interest to you, as well as important academic announcements that you need to be aware of. It may be helpful to add the Math Center email address to your contacts to ensure these messages do not end up in your junk folder. Weekly messages are also archived on our Facebook page (https://www.facebook.com/UAmathmajors).

Faculty Advisors

To help you create a course of study best suited to your talents, interests, and goals, faculty members from the Mathematics Department have volunteered to act as advisors for math majors.

As students progress in the math major, they are assigned faculty advisors based on the math major option that has been selected. Your advisor will then - and each term thereafter - discuss your educational plans with you and help you set up a mathematics program. He or she can provide more helpful information regarding the content and difficulty level of the specialized 400-level courses that you will be taking. For students who have selected a math major option that has a flexible fifth 400-level course, the course selection must be approved by the faculty advisor; in fact, he or she will be the one to verify that your math major is complete when it comes time to graduate.

Your faculty advisor is also a source of information about careers and/or graduate school, and may know of research and internship opportunities within the University and across the country. Each semester, students are sent a message before
priority registration begins to make sure they know who their faculty advisors are and how to reach them.

College of Science Advising Office

The College of Science Advising Office is available for math majors who need to start their degree checks, are looking for permission to enroll in extra units for a semester, who need their Dean’s permission to withdraw from a course after the deadline, or if an urgent matter arises and the Undergraduate Program Coordinator is not available. The College of Science Advising Office is located in the Gould-Simpson Building room 1017. If math is not your primary major, please consult with your primary college's advising office for assistance with these issues.

Math Majors Events Calendar

The Math Center maintains a calendar of events of interest to undergraduate math majors. Some of these events are put on specifically for math majors – some of them are even organized or sponsored by the Math Center itself. But we also list other events that we believe to be of special interest to math majors. The current listing is on the Math Center Events webpage (http://math.arizona.edu/events/ugrads).

The MathCats Club

MathCats is the undergraduate club for students of all majors who are interested in mathematics. It provides opportunities for students to get to know each other, share experiences, have fun, and help each other succeed.

Putnam Competition

The first Saturday in December, some UA undergraduate students participate in the William Lowell Putnam Mathematical Competition (http://math.scu.edu/putnam/), a national contest sponsored by the Mathematical Association of America (MAA). The competition consists of two 3-hour sessions, during each of which each student individually attempts to solve six problems. The exam is designed to test
originality and creativity in mathematical thinking. The MAA maintains a list of top participants (http://maa.org/awards/putnam.html) from past competitions.

Problem–Solving Laboratory

The *UA Mathematics Problem–Solving Laboratory* meets informally once a week to ponder challenging mathematical problems and learn important techniques for solving them. A knowledge of calculus is necessary for some problems, but many problems require only insight and ingenuity.

All UA undergraduate students are welcome to participate. It is also possible to register for the seminar as a one-credit pass-fail course, MATH 294A. For more information, including the meeting place and time for the current semester, see the schedule of classes (http://schedule.arizona.edu). Topics from some past semesters can be found on the old MATH 294 website (http://math.arizona.edu/~savitt/teaching/math294/).

Undergraduate Research Seminar

The *UA Mathematics Undergraduate Research Seminar*, MATH 396C is an exciting opportunity to introduce undergraduates to research and careers in the mathematical sciences. Several different faculty members will present 1-2 lectures each on research topics/projects in which undergraduates can become involved. The lectures will be given by experts covering computational, mathematical, physical and engineering aspects of the subject accessible to an undergraduate audience. Speakers will expose the role of mathematics in the work they do.

The seminar is open to all undergraduates who have completed a course in linear algebra (MATH 313) or vector calculus (MATH 223). MATH 396C carries one unit of upper-division elective credit, and is generally offered each Spring. This course may not be used to fulfill degree requirements for the math major or minor.

Students considering writing an honors thesis in math are encouraged to enroll in the research seminar prior to or during the term in which they will plan their honors thesis.

For further information about the seminar, please contact the current URA program coordinator: ura@math.arizona.edu
Math Colloquia

The School of Mathematical Sciences organizes various colloquia, seminars, and other talks throughout each semester. Whenever such an event is specifically aimed at undergraduate math majors, it is well-publicized and listed on our calendar. However, in general, the colloquia series are always aimed at a wide audience, and undergraduates should consider attending these talks.

Undergraduate Colloquium

On selected afternoons during each semester, the math department organizes hour-long programs designed especially for undergraduate students. Sometimes it is a talk on a mathematical topic by a faculty member or visitor. Sometimes the speaker is a math undergraduate student. Some talks concern an area of mathematics, while other talks are on practical matters such as careers, graduate school, and selecting upper-division math courses.

Mathematics / Applied Mathematics Colloquium

At least twice a week, talks are presented by distinguished mathematicians from the University of Arizona and other institutions around the world. Coffee, tea, and cookies are usually served beforehand. These events provide an opportunity to rub shoulders with faculty members and to see famous mathematicians in action.

Math Instruction Colloquium

This is a colloquium for anyone interested in mathematics education, which includes mathematics undergraduates, graduate students, post-docs, faculty, and local school teachers. Techniques, strategies, and course content in the teaching of mathematics are discussed by participants and by leading educators invited from the outside.

Graduate Student Colloquium

The math department graduate students organize a weekly colloquium, often on topics accessible to undergraduate students. The speakers are usually graduate
students presenting aspects of their own research. The atmosphere is generally rather informal.

Applied Mathematics Brown Bag Colloquium

The graduate students in the Interdisciplinary Program in Applied Mathematics organize a weekly colloquium, often on topics accessible to undergraduate students. The speakers are usually graduate students presenting aspects of their own research. The atmosphere is generally rather informal.
Opportunities for Math Majors

Department-level Opportunities

See http://math.arizona.edu/academics/undergrads/opportunities for details.

Undergraduate Research

Our Undergraduate Research Assistant (URA) program provides opportunities to earn money or credit while engaging in research. You might furthermore have an opportunity to present your research at a conference such as SUnMaRC (http://sunmarc.org/).

Undergraduate Teaching Opportunities

Our Undergraduate Teaching Assistant (UTA) programs provide opportunities to earn money or credit while engaging in teaching-related activities.

Tutoring Jobs

The Center for Recruitment and Retention of Mathematics Teachers (http://crr.math.arizona.edu/) offers an opportunity to observe dynamic teaching, attend tutor preparation classes for a credit, and tutor middle and high school students for pay. Other locations on campus that offer tutoring services might also have job opportunities. For a current listing, see the math department tutoring page (http://math.arizona.edu/academics/tutoring).

Honors

Honors Course Work — To graduate with honors from the Honors College, 30 units of honors course work are usually required; consult your Honors College advisor for more information.
The Math Department offers a few honors courses/sections that count toward a mathematics major, usually at the 100-and 200-level. These honors math courses are available to highly motivated students with strong mathematical backgrounds. Acceptance to the UA Honors College is not a requirement. Eligibility is determined based on what type of student you are: current UA students may be nominated by the instructor of their current math class; new incoming Freshmen who start at UA in Fall semester may be eligible based on math placement. If you are a new incoming Freshman for Fall semester and would like to know more, please see the math placement advisors at your new student orientation, or contact placement@math.arizona.edu

In higher-level math courses, students may choose to contract for honors. Juniors and Seniors in the Honors College may also (with appropriate approvals) take 500-level graduate courses for undergraduate honors credit. Non-honors Seniors with strong GPAs may also be able to take 500-level courses. Talk to your advisor for more information.

Honors Thesis — To graduate with honors from the Honors College in your major area, students need to submit a prospectus outlining their proposed thesis work, and then complete and submit a thesis through the major department. If you are considering an honors thesis in mathematics, consult with the Math Center early on for suggestions to find a project idea and help you connect with a faculty member to supervise your research. Taking MATH 396C in a spring semester can be a good way to find a thesis topic and mentor.

University-level Opportunities

There exist many research-related and teaching-related opportunities on the UA campus. This section lists some of the more prominent of such activities.

The University of Arizona Office of Undergraduate Research website (http://ur.arizona.edu/) can help you find research opportunities around the U of A, and will help you connect with projects in your area of interest.

Undergraduate Biology Research Program

To learn more, please visit the Undergraduate Biology Research Program website (http://ubrp.arizona.edu/).
UA NASA Space Grant Program

To learn more, please visit the NASA Space Grant Program website (http://spacegrant.arizona.edu/opportunities/internships/).

UA Summer Research Institute

This program, although run by the UA Graduate College, offers opportunities for undergraduate students. To learn more, please visit the Summer Research Institute website (http://grad.arizona.edu/sri/).

Teaching Teams Program

The primary goal of the Teaching Teams Program (TTP) is to improve learning on the campus of the University of Arizona. They do this through the creation of a Teaching Team which includes Instructors, Graduate Teaching Assistants (GTAs), and student peer assistants. These student peer assistants are called Preceptors. To learn more about becoming a Preceptor, see the Teaching Teams Program website (http://teachingteams.arizona.edu/).

UA Career Services

Besides offering job placement help for current UA students and alumni, UA Career Services (http://www.career.arizona.edu/) also assists current UA students in finding and landing internships and other career-related experiences. Career counseling, resume reviews, help with interview skills, and assistance with graduate school applications are just a few of the other services they provide.

Internships and Outside Programs

Internships

UA Career Services is the most up-to-date source for information on internships available to students. They can also help critique your resume, hone your interview skills, and more. Internships are a great way to gain work-related experience prior to graduation, and in some cases, they have led to offers of permanent jobs for our students after they graduate.
Summer Programs

A wide variety of summer research programs, known as Research Experiences for Undergraduates (or REUs), exist for mathematics majors. Many of these programs not only provide experience that can help students land a job (or graduate school offer) after graduation, they frequently also pay students to participate! Many of the programs require computer programming experience, so it is recommended that students fulfill their math major computer programming requirement early on in their undergraduate careers. For more information about the types of programs available, see our website (http://math.arizona.edu/academics/undergrads/opportunities/external#sum).

Semester Programs

Opportunities also exist for mathematics majors to spend a term studying at another institution, either in the United States or abroad. A list of some programs with a strong mathematical focus can be found on our website (http://math.arizona.edu/academics/undergrads/opportunities/external#sem).
For More Information

Contact the Math Center:

mcenter@math.arizona.edu
http://math.arizona.edu/academics/undergrads/advising/contact